Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 17(6): e0269105, 2022.
Article in English | MEDLINE | ID: covidwho-1987141

ABSTRACT

Male sex and advanced age are associated with severe symptoms of COVID-19. Sex and age also exhibit substantial associations with genome-wide DNA methylation (DNAm) differences in humans. Using a random sample of Illumina EPIC-based genome-wide methylomes from peripheral whole blood of 1,976 parents, participating in The Norwegian Mother, Father and Child Cohort Study (MoBa), we explored whether DNAm in genes linked to SARS-CoV-2 host cell entry and to severe COVID-19 were associated with sex and age. This was carried out by testing 1,572 DNAm sites (CpGs) located near 45 genes for associations with age and sex. We found that DNAm in 281 and 231 of 1,572 CpGs were associated (pFDR<0.01) with sex and aging, respectively. CpGs linked to SARS-CoV-2 host cell entry genes were all associated with age and sex, except for the ACE2 receptor gene (located on the X-chromosome), which was only associated with sex (pFDR<0.01). Furthermore, we examined whether 1,487 autosomal CpGs associated with host-cell entry and severe COVID-19 were more or less associated with sex and age than what would be expected from the same number of randomly sampled genome-wide CpGs. We found that the CpGs associated with host-cell entry and severe COVID-19 were not more or less associated with sex (R2 = 0.77, p = 0.09) than the CpGs sampled from random genomic regions; age was actually found to be significantly less so (R2 = 0.36, p = 0.04). Hence, while we found wide-spread associations between sex and age at CpGs linked to genes implicated with SARS-CoV-2 host cell entry and severe COVID-19, the effect from the sum of these CpGs was not stronger than that from randomly sampled CpGs; for age it was significantly less so. These findings could suggest that advanced age and male sex may not be unsurmountable barriers for the SARS-CoV-2 virus to evolve increased infectiousness.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Child , Cohort Studies , CpG Islands , DNA Methylation , Epigenesis, Genetic , Humans , Male , SARS-CoV-2/genetics , Virus Internalization
2.
Sci Rep ; 12(1): 11478, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1921716

ABSTRACT

Although substantial progress has been made in managing COVID-19, it is still difficult to predict a patient's prognosis. We explored the epigenetic signatures of COVID-19 in peripheral blood using data from an ongoing prospective observational study of COVID-19 called the Norwegian Corona Cohort Study. A series of EWASs were performed to compare the DNA methylation profiles between COVID-19 cases and controls three months post-infection. We also investigated differences associated with severity and long-COVID. Three CpGs-cg22399236, cg03607951, and cg09829636-were significantly hypomethylated (FDR < 0.05) in COVID-19 positive individuals. cg03607951 is located in IFI44L which is involved in innate response to viral infection and several systemic autoimmune diseases. cg09829636 is located in ANKRD9, a gene implicated in a wide variety of cellular processes, including the degradation of IMPDH2. The link between ANKRD9 and IMPDH2 is striking given that IMPDHs are considered therapeutic targets for COVID-19. Furthermore, gene ontology analyses revealed pathways involved in response to viruses. The lack of significant differences associated with severity and long-COVID may be real or reflect limitations in sample size. Our findings support the involvement of interferon responsive genes in the pathophysiology of COVID-19 and indicate a possible link to systemic autoimmune diseases.


Subject(s)
Autoimmune Diseases , COVID-19 , Autoimmune Diseases/genetics , COVID-19/complications , COVID-19/genetics , Cohort Studies , DNA Methylation , Humans , Post-Acute COVID-19 Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL